Dot Product of Two Vectors:

 $\overrightarrow{a} \cdot \overrightarrow{b} = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \cos \theta$

Properties:

- (i) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ [i.e. dot product is commutative].
- (ii) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$ is not defined.
- (iii) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ [distributive property]
- (iv) If \vec{a} and \vec{b} are perpendicular to each other, then $\vec{a} \cdot \vec{b} = 0$, converse is also true.
- (v) Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ and projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$.
- (vi) If $\theta = 0$, then the projection vector of \overrightarrow{AB} will be \overrightarrow{AB} itself and if $\theta = \pi$, then the projection vector of \overrightarrow{AB} will be \overrightarrow{BA} .
- (vii) If $\theta = \frac{\pi}{2}$ or $\theta = \frac{3\pi}{2}$, then the projection vector of \overrightarrow{AB} will be zero vector.
- (viii) Angle between two vectors \vec{a} and \vec{b} is

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \quad \text{or } \theta = \cos^{-1} \left[\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \right]$$

(ix)
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$

(x) $\hat{i}^2 = \hat{j}^2 = \hat{k}^2 = 1$
(xi) $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$
(xii) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.
(xiii) $(\lambda \cdot \vec{a}) \cdot \vec{b} = \lambda(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\lambda \cdot \vec{b})$, where λ is any scalar.
(xiv) If $\theta = \pi$, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$; If $\theta = \pi$, then $\vec{a} \cdot \vec{b} = -|\vec{a}| |\vec{b}|$

Vector (or Cross) Product of Vectors:

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, such that $0 \le \theta \le \pi$

here n makes right handed system with two vectors a and b.

Properties:

- (i) Angle between two vectors is $\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$ or $\theta = \sin^{-1} \left| \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} \right|$
- (ii) $\vec{a} \times \vec{a} = 0$ (iii) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- (iv) In general, $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$
- (v) $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ [distributive property]

(vi)
$$\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$$

- (vii) If \vec{a} is parallel to \vec{b} , then $\vec{a} \times \vec{b} = \vec{0}$ and converse is also true.
- (viii) If $\theta = \frac{\pi}{2}$, then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}|$
 - (ix) Area of parallelogram whose adjacent sides are along \vec{a} and $\vec{b} = |\vec{a} \times \vec{b}|$.
 - (x) Area of triangle, whose adjacent sides are along \vec{a} and $\vec{b} = \frac{1}{2} |\vec{a} \times \vec{b}|$.
- (xi) $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$ and $\hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{i} = \hat{j}$ (xii) $\hat{j} \times \hat{i} = -\hat{k}$, $\hat{k} \times \hat{j} = -\hat{i}$ and $\hat{i} \times \hat{k} = -\hat{j}$
- (xiii) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_2 \end{vmatrix}$

$$\Rightarrow (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$$

(xiv) Unit vector \hat{n} , which is perpendicular to both the vectors \vec{a} and \vec{b} , is given by

$$\hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$$

(xv) For vectors \vec{a} and \vec{b} , if $\vec{a} \times \vec{b} = \vec{0}$, then either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$ or $\vec{a} ||\vec{b}$.